CS448f: Image Processing For Photography and Vision

Deconvolution

Assignment 3

- Competition
- Lessons Learned

Project

- Proposals due Thursday
- Everyone should have a pretty good idea of what they plan to do at this stage
- Presentations begin next Tuesday
- Schedule?

Problems in Photography

	Linear Filters	Non-Linear Filters	Alignment	Wavelets	Gradient Domain	
Misfocus or Lens Blur	Sharpening	Sharpening	Focal Stacks Panoramas	Sharpening	?	
Motion Blur	Sharpening	Sharpening	?	?	?	
Noise	Blurring	Bilateral Nonlocal Means	Aligned Averaging	Wavelet Shrinkage	?	
Dynamic Range	?	Tone- Mapping	HDR Acquisition	?	Tone- Mapping	
Composition	Multi-Band Blending	?	Panoramas	?	Poisson Blending	

Problems in Photography

	Linear Filters	Non-Linear Filters	Alignment	Wavelets	Gradient Domain	Deconvolution	
Misfocus or Lens Blur	Sharpening	Sharpening	Focal Stacks Panoramas	Sharpening	?	1	
Motion Blur	Sharpening	Sharpening	?	??		\checkmark	
Noise	Blurring	Bilateral Nonlocal Means	Aligned Averaging	Wavelet Shrinkage	?	×	
Dynamic Range	?	Tone- Mapping	HDR Acquisition	?	Tone- Mapping	?	
Composition	Multi-Band Blending	?	Panoramas	?	Poisson Blending	?	

Motion Blur (Handheld 200mm 1/50 s)

Motion Blur (Handheld 200mm, 1/50s)

Less Motion Blur (1/640s)

Motion Blur (Rolling the camera)

Motion Blur = Convolution

*

Convolution = Linear Operator

- Image * kernel = blurry
- Km = b
 - K = the blur (may or may not be known)
 - m = the unknown good image
 - b = the known blurry image
- K is known = nonblind deconvolution
- K is unknown = blind deconvolution

Estimating K

- Include an accelerometer
- Look for the path traced by bright points
- Bounce back and forth between estimating K and estimating m
 - Deconvolution using Natural Image Priors
 - Levin et al. 2007

Deconvolution = Least Squares

- Assuming we know K
- Find m such that Km = b
- Alternatively, minimize (Km-b)²

Solution Methods: Input

Solution Methods: Gradient Descent

Solution Methods: Richardson-Lucy

Solution Methods: Richardson-Lucy

- m *= K^T(b/(Km))
- Like a multiplicative gradient descent
- Each step conserves average brightness in each region
- ImageStack -load blurry.tmp -loop --dup --load kernel.tmp --pull 1 --convolve --pull 1 --pop -load blurry.tmp --divide --load kernel.tmp --flip x --flip y --pull 1 --convolve --pull 1 --pop -multiply --save rl.tmp --display

High-Frequency Junk

Priors

- The result image above satisfies the equation:
 Km = b
- Why does it look bad?

Priors

- The result image above satisfies the equation:
 Km = b
- Why does it look bad?
- There's extra high-frequency junk

Gradient Magnitude

Original

Richardson Lucy Result

Gradient Magnitude

Original

Richardson Lucy Result

Let's also minimize gradients

- Km = b
- D_xm = 0
- $D_y m = 0$
- Solving this least-squares minimizes: |Km-b|² + |D_xm|² + |D_ym|²
 = L2-norm of error + L2-norm of gradient field

Let m = correct answer

|Km - b|²

 $|D_xm|^2 + |D_ym|^2$

Let m = Richardson Lucy

|Km - b|²

 $|D_xm|^2 + |D_ym|^2$

Let m = blurry input

|Km - b|²

 $|D_{x}m|^{2} + |D_{y}m|^{2}$

Gradient Magnitude is a Bad Prior

- It strongly prefers blurry output if at all possible
- The prior and the error fight each other
- What's a better prior?

Strong Gradients are Sparse

Strong Gradients are Sparse

Our old prior:

Original Grad ^ 2

Motion-Blurred Grad ^ 2

Slightly better to count the number of large edges, and minimize that

Original Grad ^ 0.125

Motion-Blurred Grad ^ 0.125

Given a black-white transition...

Sum of gradients raised to power < 1 prefers sharp edges:

Sum of gradients raised to power > 1 prefers smooth edges:

Optimization

Solving this least-squares minimizes:

 $-|Km-b|^{2} + |D_{x}m|^{2} + |D_{y}m|^{2}$

- We want to minimize something like this:
 |Km-b|² + |D_xm|^{1/2} + |D_ym|^{1/2}
- No longer a convex optimization problem...
- Can still use gradient descent to find a local minima
 - it picks a sensible looking place for each edge

Some results

http://graphics.ucsd.edu/~neel/dissertation/chapter5results/

More Fun in the Gradient Domain

So if gradients should be sparse, and we see a gradient that looks like this:

0	0	1	3	5	6	4	1	0	0

• Why not convert it to this:

More Fun in the Gradient Domain

• If it works: call it deblurring

If it doesn't: call it a "painterly effect"

Output