CS448f: Image Processing For Photography and Vision

Deconvolution

Assignment 3

- Competition
- Lessons Learned

Project

- Proposals due Thursday
- Everyone should have a pretty good idea of what they plan to do at this stage
- Presentations begin next Tuesday
- Schedule?

Problems in Photography

	Linear Filters	Non-Linear Filters	Alignment	Wavelets	Gradient Domain
Misfocus or Lens Blur	Sharpening	Sharpening	Focal Stacks Panoramas	Sharpening	?
Motion Blur	Sharpening	Sharpening	?	?	?
Noise	Blurring	Bilateral Nonlocal Means	Aligned Averaging	Wavelet Shrinkage	?
Dynamic Range	?	ToneMapping	HDR Acquisition	?	ToneMapping
Composition	Multi-Band Blending	?	Panoramas	?	Poisson Blending

Problems in Photography

	Linear Filters	Non-Linear Filters	Alignment	Wavelets	Gradient Domain	Deconvolution
Misfocus or Lens Blur	Sharpening	Sharpening	Focal Stacks Panoramas	Sharpening	?	$\sqrt{ }$
Motion Blur	Sharpening	Sharpening	?	?	?	$\sqrt{ }$
Noise	Blurring	Bilateral Nonlocal Means	Aligned Averaging	Wavelet Shrinkage	?	X
Dynamic Range	?	Tone- Mapping	HDR Acquisition	?	ToneMapping	?
Composition	Multi-Band Blending	?	Panoramas	?	Poisson Blending	?

Motion Blur (Handheld 200mm 1/50 s)

Motion Blur (Handheld 200mm, 1/50s)

Less Motion Blur (1/640s)

Motion Blur = Convolution

Convolution = Linear Operator

- Image * kernel = blurry
- $\mathrm{Km}=\mathrm{b}$
$-K=$ the blur (may or may not be known)
$-m=$ the unknown good image
$-b=$ the known blurry image
- K is known = nonblind deconvolution
- K is unknown = blind deconvolution

Estimating K

- Include an accelerometer
- Look for the path traced by bright points
- Bounce back and forth between estimating K and estimating m
- Deconvolution using Natural Image Priors
- Levin et al. 2007

Deconvolution = Least Squares

- Assuming we know K
- Find m such that $\mathrm{Km}=\mathrm{b}$
- Alternatively, minimize $(\mathrm{Km}-\mathrm{b})^{2}$

Solution Methods: Input

Solution Methods: Gradient Descent

Solution Methods: Richardson-Lucy

Solution Methods: Richardson-Lucy

- $\mathrm{m} *=\mathrm{K}^{\top}(\mathrm{b} /(\mathrm{Km}))$
- Like a multiplicative gradient descent
- Each step conserves average brightness in each region
- ImageStack -load blurry.tmp -loop --dup --load kernel.tmp --pull 1 --convolve --pull 1 --pop -load blurry.tmp --divide --load kernel.tmp --flip x --flip y --pull 1 --convolve --pull 1 --pop -multiply --save rl.tmp --display

High-Frequency Junk

Priors

- The result image above satisfies the equation:
$-\mathrm{Km}=\mathrm{b}$
- Why does it look bad?

Priors

- The result image above satisfies the equation:
$-\mathrm{Km}=\mathrm{b}$
- Why does it look bad?
- There's extra high-frequency junk

Gradient Magnitude

Original
Richardson Lucy Result

Gradient Magnitude

Original
Richardson Lucy Result

Let's also minimize gradients

- $\mathrm{Km}=\mathrm{b}$
- $D_{x} m=0$
- $D_{y} m=0$
- Solving this least-squares minimizes:
$|K m-b|^{2}+\left|D_{x} m\right|^{2}+\left|D_{y} m\right|^{2}$
= L2-norm of error + L2-norm of gradient field

Let $\mathrm{m}=$ correct answer

Let $\mathrm{m}=$ Richardson Lucy

$|K m-b|^{2}$
$\left|D_{x} m\right|^{2}+\left|D_{y} m\right|^{2}$

Let $\mathrm{m}=$ blurry input

$|K m-b|^{2}$
$\left|D_{x} m\right|^{2}+\left|D_{y} m\right|^{2}$

Gradient Magnitude is a Bad Prior

- It strongly prefers blurry output if at all possible
- The prior and the error fight each other
- What's a better prior?

Strong Gradients are Sparse

Strong Gradients are Sparse

Our old prior:

Original Grad ${ }^{\wedge} 2$

Motion-Blurred Grad ^ 2

Slightly better to count the number of large edges, and minimize that

Original Grad ^ 0.125
Motion-Blurred Grad ^ 0.125

Given a black-white transition...

Sum of gradients raised to power < 1 prefers sharp edges:

Sum of gradients raised to power > 1 prefers smooth edges:

Optimization

- Solving this least-squares minimizes: $-|K m-b|^{2}+\left|D_{x} m\right|^{2}+\left|D_{y} m\right|^{2}$
- We want to minimize something like this: $-|K m-b|^{2}+\left|D_{x} m\right|^{1 / 2}+\left|D_{y} m\right|^{1 / 2}$
- No longer a convex optimization problem...
- Can still use gradient descent to find a local minima
- it picks a sensible looking place for each edge

Some results

- http://graphics.ucsd.edu/~neel/dissertation/chapter5results/

More Fun in the Gradient Domain

- So if gradients should be sparse, and we see a gradient that looks like this:

0	0	1	3	5	6	4	1	0	0

- Why not convert it to this:

0	0	1	3	5	6	4	1	0	0
0	0	0	1	3	15	1	0	0	0

More Fun in the Gradient Domain

- If it works: call it deblurring
- If it doesn't: call it a "painterly effect"

