CS448f: Image Processing For
Photography and Vision

Alignment

Assignment 1 Grading

Graded out of 20
4 points for correctness
4 points for readability
8 points for accuracy
— 4 for hitting the minimum (0.07)

— 7 for hitting the goal (0.05)
— Linear in between
4 points for speed
— 2 for hitting the minimum (at least as fast)
— 3 for hitting the goal (50% faster)
— Linear in between

Assignment 2 Grading

Graded out of 20
4 points for correctness
4 points for readability

4 points for accuracy
— 2 for 0.007
— 3 for 0.005 (the goal)
— 4 for 0.003 or less

8 points for speed
— O for the same speed
— 4 for 2x faster
— 7 for 5x faster (the goal)
— 8 for 10x faster or better

Noise

So far we’ve tried:

Averaging pixels with nearby pixels
— They’re probably looking at the same material

Averaging pixels with nearby pixels that have a
similar value

— They’re probably looking at the same material
Averaging pixels with nearby pixels that have
similar local neighborhoods

— They’re probably looking at the same material

Noise

* How else can we get more measurements of
the same material?

Noise

Take multiple photographs of it!
Average the results
— Perfect for static scenes and perfect alignment

Or take the median over time at each pixel

— Perfect if there are transient occluders (eg a bird flies
across your scene)

Or use a bilateral filter over space and time
— More robust if the alignment isn’t perfect

Or use non-local means on the entire burst
— Can cope with pretty poor alignment

Noise

Take multiple photographs of it!

Average the results
— Perfect for static scenes and perfect alighment
Or take the median over time at each pixel

— Perfect if there are transient occluders (eg a bird flies
across your scene)

Or use a bilateral filter over space and time
— More robust if the alignment isn’t perfect

Or use non-local means on the entire burst
— Can cope with pretty poor alignment

Alignment

 What other
problems might it
help with?

|
/ 'Oiu"ff A
"SR i
'/ens WEToC Tl
\
":', o f'ﬂ
‘A)AFPQVV
l\|
(\J (g | V7
-/ /l
M, ;
’ 73 O\A/
2 O\s Y
U /M LA A’AOM
ki : \
hthl‘ O & Set

Optical Flow

Optical Flow

Optical Flow

Application: View Interpolation

Left Input Output Right Input

Moving Gradients

 Mahajan et al. Siggraph 2009.

Downsides:

* Slow
— Search required at each patch
— How far to search?

* Error prone
— Regions without texture will fail
— Occlusion boundaries may fail

— Regularization can help

What if we just need a global motion?

Point Features

 Why use the whole image?

— Much of it was problematic to align

e Better just to pick a few good landmarks

— You don't need to memorize what every building
on campus looks like. If you get lost, just look for
Hoover tower.

 Compresses the problem
— Can be very fast!

1) Find Point Features

1) Find Point Features

2) Find Correspondences

Finding Features

e 1) Figure out what points to extract
— Features
e 2) Figure out what other points they match

— Correspondences

e 3) Find a warp that satisfies the
correspondences

Finding Features

* A good point is localizable in space
— unlike its neighbours

 Therefore: take the average of the neighbours
(gaussian blur), and subtract it from the
original

* (demo)

* Picks up very fine corners

Point Tracking

Can change the scale of points we’re looking
for by using the difference of two Gaussians

(demo)

more robust to noise, looks for larger, stronger
features

There are many corner detectors
— difference of Gaussians is pretty good

Extracting Corners

 All we have so far is a filter that measures
"cornerness"

* Look for local maxima of this function to get
actual corners

* Can compute sub-pixel local maxima location
by fitting parabola (see LocalMaxima::apply).

Better Corner Detector Filters

e The Moravec Corner Detector

— Compares patch around this pixel to patch around
neighboring pixels. Sums the patch distances.

 Harris Corner Detector

— Differentiates this quantity directly with respect to
direction

— You end up with a covariance matrix of local
gradients

— High variance = wide range of local gradients =
corner

Harris Corner Detector

B*G,2 B*G,G,

B*G,G, B*G,2

Harris vs D.0.G

Corners aren’t very big

* Not much information to work with to
compute a detailed descriptor

* How about looking for interesting regions
instead?

* Small corners also tend to change rapidly
— jaggies
— highlights
— occlusion-based

Blob Detection

Take difference of Gaussians at various scales
Look for “scale-space extrema”
Demo

Downside of using large blobs?

Point Tracking

e 1) Figure out what points to extract\/
— Features
e 2) Figure out what other points they match

— Correspondences

e 3) Find a warp that satisfies the
correspondences

Matching Corners

* Just go for the closest point

Matching Corners

e Let's introduce more corners

Matching Corners

e Let's introduce more corners

Matching Corners

* Or alarger shift

Matching Corners

* Or alarger shift

Descriptors

 Why just use distance in 2-D when we have so
much more information at each patch.

 Compute an n-D "descriptor" that describes
the patch.

* Use the closest point in the n-D space instead.

Descriptors

* Naive descriptor: Just read a square block of
pixels out of the image around the point

— Invariant to translation, but

— What happens if you rotate the camera?

— What happens if you zoom?

— The scene gets brighter or the exposure changes?

— The image is very noisy?

— You view the same object from an oblique angle?
* This is what ImageStack does currently

Descriptors

e SIFT is the gold standard descriptor
— Check wikipedia for details of all the various filters
— Usually massive overkill

* SURF is faster and still very good
— Still overkill for most alignment apps

* These are both more suitable for recognition

Edge Features

Point based matches give you 2 constraints
per match

Edge based matching can still give you 1 per
match

Edges can be more common in many
environments than corners

Harder to extract
Harder to compute descriptors for

Matching Edges

Matching Edges

Alignment

We've discussed means of generating
correspondences between images

How do we turn this into an actual motion
model between images?

Least Squares + RANSAC!

Least Squares

a, are the locations of points in the first image

b. are the locations of points in the second
Image

We want a function m that maps fromatob

We need to calculate m from a,and b,

Least Squares

If m is a matrix M, this is easy, we can use
least squares.

A=(a,a;a,a;...)
B=(byb,b,b,...)
MA =B

MAAT = BA'

M = BAT(AAT)-

Least Squares

VELTYIV R

BAT and AAT can be computed incrementally
2X2 matrix inverse is easy

O(1) memory use

This is easy and simple to code. DO NOT:
— Use a fancy linear algebra library
— Do something uneccesary like an SVD

ImageStack includes a simple header file that
implements this (see LinearAlgebra.h)

Least Squares

* What kind of motion do you get from a 2x2
matrix?

* Hey wait... least squares was pretty useless...

Least Squares

How can we augment this to account for
translation?

Stick a 1 on the end of a,
M is now 2x3 instead of 2x2

This approach is the tip of the iceberg

You can solve any Mf(A) = B where f is
nonlinear the same way

Least Squares

Eg, fitting a quintic polynomial
is linear

a.=[1x, x.2 x3 x4 x.°]

bi= :yi]

M is the best 6x1 matrix
What is f?

A\

Least Squares

So we're allowed to mess with the a vectors

We can also mess with the b vectors
Mf(A) = g(B)

But... error is no longer minimized in the right
space

— Often doesn't matter in practice

Least Squares

* Two different images from the same location
are related by a projective transform

e ...let's work through it on the board

Least Squares

e Given a bunch of a vectors and b vectors...

* We can solve (for M):
—MA=8B
— Mf(A)=B
— Mf(A) = g(B) (but ...)
 What about:
—h(M f(A)) =B
— h(M,f(M,A)) =B

RANSAC

What is everyone pointing at?

/ \ l J 4 A0
o.; \::
of o
o/ T \ \ \o

RANSAC

e Least squares will tell us!

RANSAC

X marks the spot

®
®
//z/.
L d
f”
—’—’—’
- —
----___-
NNNNN
~
\~\
®

/ o\ \
N
N

RANSAC

 What if some points are just plain wrong?

RANSAC

ily influenced by

e Least squares can be heav

outliers.

RANSAC

Pick the minimum number of constraints necessary
Hopefully none of them are bad

Fit the model using only these

Check how many other constraints agree

If there aren't many inliers, we made a mistake here. Restart.

If there are lots of inliers, fit the model again using only the
inliers.

RANSAC

Pick a the minimum number of points and
hope they are inliers. Fit the model.

— This is the RANdom SAmple

RANSAC

ints agree.

* Check how many other po
— This is the Consensus

RANSAC

* Hrm, in this case nearly nobody agrees. We'd
better restart with a different random pair of
constraints.

* | ,

o l //.
N e L

‘\ ———————————————— /.

o>—. | /‘

0/ \ \\.
7 . .

J AR

RANSAC

* Consensus. This time nearly everyone agrees.

/ /ﬁ/ \ \
AN}
v \)\ /)
L ALY 2 e
Sar S \ 7 M 7NN ’
S NNV S 0T TN /.
\ /
TYSAL L RN x\\\.x/ _NS
IJI I/&/a R4 1 -
e - ’
|—- ¢ 4‘.“-\-— \ \\
e \
.I-.‘.I!w 1 J@}jl' \ \\ ﬂ/ .
1 Jﬁ ~
1] 1 Vol \
1 //- \\ f /
.‘IW.-_III| \ o, . /
AY
IS AN

RANSAC

* Drop the outliers and refit the model for
accuracy

,/‘ ~
td
,/
s’

RANSAC

* How many iterations do we need?

Computer Vision in One Slide

* Extract some features from some images

* Use these to formulate some linear
constraints (even if the problem is non-linear)

* Solve a linear system of equations using
RANSAC and least squares

Assignment 3

* Let’s look at ImageStack’s -align operator.

Assignment 3

Make ImageStack’s align operator better.
The current one doesn’t work at all (buggy)

I've posted a fixed version on the assignment
webpage that works for a few of the test
cases.

Graded on how many of our test cases you
can successfully align + not taking too long

Due in one week, as usual.

Alternative to RANSAC:

Voting schemes
You’re usually solving for a model with some
number of parameters

If the number of parameters is small, can
discretize parameter space

Each constraint votes for some number of
narameters

Look for local maxima in parameter space

Known as a Hough transform, particularly
good for line detection

Hough transform exercise

* Everyone think of a number from one to ten

Hough transform exercise

If your number is even you’ll be an inlier, if it was
odd, you’re an outlier.

Outliers: pick a pair of random numbers from the
set [0, 1, 2, 3, 4].
Inliers: Your pair of numbersis 2, 4

When queried, tell me some simple linear
combination of your two numbers

— e.g: 2 times my first number plus my second number
Is 8

Let’s compare Hough transform to RANSAC

Hough Transform v RANSAC

* Hough Transform:

— Can detect multiple models in a single pass
through the input

— Uses lots of memory
— Sometimes parameter space is hard to sample

* RANSAC:

— Requires many passes through the input
— Uses little memory
— Computes highly accurate models

How would we aligh two images
using a Hough Transform?

 starting from a list of correspondences

