
CS448f: Image Processing For 
Photography and Vision

Alignment



Assignment 1 Grading

• Graded out of 20
• 4 points for correctness
• 4 points for readability
• 8 points for accuracy

– 4 for hitting the minimum (0.07)
– 7 for hitting the goal (0.05)
– Linear in between

• 4 points for speed
– 2 for hitting the minimum (at least as fast)
– 3 for hitting the goal (50% faster)
– Linear in between



Assignment 2 Grading

• Graded out of 20
• 4 points for correctness
• 4 points for readability
• 4 points for accuracy

– 2 for 0.007 
– 3 for 0.005 (the goal)
– 4 for 0.003 or less

• 8 points for speed
– 0 for the same speed
– 4 for 2x faster
– 7 for 5x faster (the goal)
– 8 for 10x faster or better



Noise

• So far we’ve tried:

• Averaging pixels with nearby pixels
– They’re probably looking at the same material

• Averaging pixels with nearby pixels that have a 
similar value
– They’re probably looking at the same material

• Averaging pixels with nearby pixels that have 
similar local neighborhoods
– They’re probably looking at the same material



Noise

• How else can we get more measurements of 
the same material?



Noise

• Take multiple photographs of it!
• Average the results

– Perfect for static scenes and perfect alignment

• Or take the median over time at each pixel
– Perfect if there are transient occluders (eg a bird flies 

across your scene)

• Or use a bilateral filter over space and time
– More robust if the alignment isn’t perfect

• Or use non-local means on the entire burst
– Can cope with pretty poor alignment



Noise

• Take multiple photographs of it!
• ALIGN THE PHOTOGRAPHS
• Average the results

– Perfect for static scenes and perfect alignment

• Or take the median over time at each pixel
– Perfect if there are transient occluders (eg a bird flies 

across your scene)

• Or use a bilateral filter over space and time
– More robust if the alignment isn’t perfect

• Or use non-local means on the entire burst
– Can cope with pretty poor alignment



Alignment

• What other 
problems might it 
help with?



Optical Flow



Optical Flow



Optical Flow



Application: View Interpolation

Left Input Right InputOutput



Moving Gradients

• Mahajan et al. Siggraph 2009.



Downsides:

• Slow

– Search required at each patch

– How far to search?

• Error prone

– Regions without texture will fail

– Occlusion boundaries may fail

– Regularization can help



What if we just need a global motion?







Point Features

• Why use the whole image? 

– Much of it was problematic to align

• Better just to pick a few good landmarks

– You don't need to memorize what every building 
on campus looks like. If you get lost, just look for 
Hoover tower.

• Compresses the problem

– Can be very fast!



Inputs:



1) Find Point Features



1) Find Point Features



2) Find Correspondences



Finding Features

• 1) Figure out what points to extract

– Features

• 2) Figure out what other points they match

– Correspondences

• 3) Find a warp that satisfies the 
correspondences



Finding Features

• A good point is localizable in space

– unlike its neighbours

• Therefore: take the average of the neighbours 
(gaussian blur), and subtract it from the 
original

• (demo)

• Picks up very fine corners



Point Tracking

• Can change the scale of points we’re looking 
for by using the difference of two Gaussians

• (demo)

• more robust to noise, looks for larger, stronger 
features

• There are many corner detectors

– difference of Gaussians is pretty good



Extracting Corners

• All we have so far is a filter that measures 
"cornerness"

• Look for local maxima of this function to get 
actual corners

• Can compute sub-pixel local maxima location 
by fitting parabola (see LocalMaxima::apply).



Better Corner Detector Filters

• The Moravec Corner Detector
– Compares patch around this pixel to patch around 

neighboring pixels. Sums the patch distances.

• Harris Corner Detector
– Differentiates this quantity directly with respect to 

direction

– You end up with a covariance matrix of local 
gradients

– High variance = wide range of local gradients = 
corner



Harris Corner Detector

B*Gx
2 B*GxGy

B*GxGy B*Gy
2



Harris vs D.o.G



Corners aren’t very big

• Not much information to work with to 
compute a detailed descriptor

• How about looking for interesting regions 
instead?

• Small corners also tend to change rapidly

– jaggies

– highlights

– occlusion-based



Blob Detection

• Take difference of Gaussians at various scales

• Look for “scale-space extrema”

• Demo

• Downside of using large blobs?



Point Tracking

• 1) Figure out what points to extract

– Features

• 2) Figure out what other points they match

– Correspondences

• 3) Find a warp that satisfies the 
correspondences



Matching Corners

• Just go for the closest point



Matching Corners

• Let's introduce more corners



Matching Corners

• Let's introduce more corners



Matching Corners

• Or a larger shift



Matching Corners

• Or a larger shift



Descriptors

• Why just use distance in 2-D when we have so 
much more information at each patch.

• Compute an n-D "descriptor" that describes 
the patch.

• Use the closest point in the n-D space instead.



Descriptors

• Naive descriptor: Just read a square block of 
pixels out of the image around the point
– Invariant to translation, but

– What happens if you rotate the camera? 

– What happens if you zoom?

– The scene gets brighter or the exposure changes?

– The image is very noisy?

– You view the same object from an oblique angle?

• This is what ImageStack does currently



Descriptors

• SIFT is the gold standard descriptor

– Check wikipedia for details of all the various filters

– Usually massive overkill

• SURF is faster and still very good

– Still overkill for most alignment apps

• These are both more suitable for recognition



Edge Features

• Point based matches give you 2 constraints 
per match

• Edge based matching can still give you 1 per 
match

• Edges can be more common in many 
environments than corners

• Harder to extract

• Harder to compute descriptors for



Matching Edges



Matching Edges



Alignment

• We've discussed means of generating 
correspondences between images

• How do we turn this into an actual motion 
model between images?

• Least Squares + RANSAC!



Least Squares

• ai are the locations of points in the first image

• bi are the locations of points in the second 
image

• We want a function m that maps from a to b

• We need to calculate m from ai and bi



Least Squares

• If m is a matrix M, this is easy, we can use 
least squares.

• A = (a0 a1 a2 a3 ...)

• B = (b0 b1 b2 b3 ...)

• MA = B

• MAAT = BAT

• M = BAT(AAT)-1



Least Squares

• M = BAT(AAT)-1

• BAT and AAT can be computed incrementally
• 2x2 matrix inverse is easy
• O(1) memory use

• This is easy and simple to code. DO NOT: 
– Use a fancy linear algebra library
– Do something uneccesary like an SVD

• ImageStack includes a simple header file that 
implements this (see LinearAlgebra.h)



Least Squares

• What kind of motion do you get from a 2x2 
matrix?

• Hey wait... least squares was pretty useless...



Least Squares

• How can we augment this to account for 
translation?

• Stick a 1 on the end of ai

• M is now 2x3 instead of 2x2

• This approach is the tip of the iceberg

• You can solve any Mf(A) = B where f is 
nonlinear the same way



Least Squares

• Eg, fitting a quintic polynomial 
is linear

• ai = [1 xi xi
2 xi

3 xi
4 xi

5]

• bi = [yi]

• M is the best 6x1 matrix

• What is f?



Least Squares

• So we're allowed to mess with the a vectors

• We can also mess with the b vectors

• Mf(A) = g(B)

• But... error is no longer minimized in the right 
space

– Often doesn't matter in practice



Least Squares

• Two different images from the same location 
are related by a projective transform

• ... let's work through it on the board



Least Squares

• Given a bunch of a vectors and b vectors...

• We can solve (for M):

– MA = B

– Mf(A) = B

– Mf(A) = g(B) (but ...)

• What about:

– h(M f(A)) = B

– h(M1f(M2A)) = B



RANSAC

• What is everyone pointing at?



RANSAC

• Least squares will tell us!



RANSAC

• X marks the spot



RANSAC

• What if some points are just plain wrong?



RANSAC

• Least squares can be heavily influenced by 
outliers.



RANSAC

• Pick the minimum number of constraints necessary

• Hopefully none of them are bad

• Fit the model using only these

• Check how many other constraints agree

• If there aren't many inliers, we made a mistake here. Restart.

• If there are lots of inliers, fit the model again using only the 
inliers.



RANSAC

• Pick a the minimum number of points and 
hope they are inliers. Fit the model.

– This is the RANdom SAmple



RANSAC

• Check how many other points agree.

– This is the Consensus



RANSAC

• Hrm, in this case nearly nobody agrees. We'd 
better restart with a different random pair of 
constraints.



RANSAC

• RANdom SAmple



RANSAC

• Consensus. This time nearly everyone agrees.



RANSAC

• Drop the outliers and refit the model for 
accuracy



RANSAC

• How many iterations do we need?



Computer Vision in One Slide

• Extract some features from some images 

• Use these to formulate some linear 
constraints (even if the problem is non-linear)

• Solve a linear system of equations using 
RANSAC and least squares



Assignment 3

• Let’s look at ImageStack’s -align operator.



Assignment 3

• Make ImageStack’s align operator better.

• The current one doesn’t work at all (buggy)

• I’ve posted a fixed version on the assignment 
webpage that works for a few of the test 
cases.

• Graded on how many of our test cases you 
can successfully align + not taking too long

• Due in one week, as usual.



Alternative to RANSAC: 
Voting schemes

• You’re usually solving for a model with some 
number of parameters

• If the number of parameters is small, can 
discretize parameter space

• Each constraint votes for some number of 
parameters

• Look for local maxima in parameter space

• Known as a Hough transform, particularly 
good for line detection



Hough transform exercise

• Everyone think of a number from one to ten



Hough transform exercise

• If your number is even you’ll be an inlier, if it was 
odd, you’re an outlier.

• Outliers: pick a pair of random numbers from the 
set [0, 1, 2, 3, 4].

• Inliers: Your pair of numbers is 2, 4
• When queried, tell me some simple linear 

combination of your two numbers
– e.g: 2 times my first number plus my second number 

is 8

• Let’s compare Hough transform to RANSAC



Hough Transform v RANSAC

• Hough Transform:
– Can detect multiple models in a single pass 

through the input

– Uses lots of memory

– Sometimes parameter space is hard to sample

• RANSAC:
– Requires many passes through the input

– Uses little memory

– Computes highly accurate models



How would we align two images 
using a Hough Transform?

• starting from a list of correspondences


