CS448f: Image Processing For Photography and Vision

Sharpening

- Boost detail in an image without introducing noise or artifacts
- Undo blur
 - due to lens aberrations
 - slight misfocus

Recall Denoising

Input

Signal + Noise

Recall Denoising

Input

Input

Coarse + Fine

Output

Coarse + Fine

- Any Filter which removes fine details can be used to sharpen
 - 1) Coarse = Remove Fine Details from Input
 - 2) Fine = Input Coarse
 - -3) Output = Input + Fine x 0.5
- Which filters should be use to create the coarse base layer?
- What about noise?

Linear Sharpening Filters

- Let G be a Gaussian Kernel
 - 1) Coarse = G * Input
 - -2) Fine = Input Coarse
 - -3) Output = Input + Fine x 0.5

Convolution is Linear

- G*(a+b) = G*a + G*b
 - Output = Input + 0.5 Fine
 - Output = Input + 0.5 (Input G*Input)
 - Output = 1.5 Input 015 G*Input
 - Output = (1.5 I 0.5 G) * Input
- Or in Fourier Space

- Output' = (1.5 I' - 0.5 G') x Input'

Linear Sharpening Filters

 I is the filter that does nothing when you convolve by it, so I' is the filter that does nothing when you multiply by it => I' = 1

Linear Sharpening Filters

- The Fourier Transform of a Gaussian is a Gaussian
- G':

The result in Fourier space:

• (1.5 I' - 0.5 G') = amplify high frequencies

Demo

 ImageStack -load dog.jpg -dup -dup -dup gaussianblur 4 -pull 1 -subtract -scale 2 -add adjoin t -resample 10 width height -display

Input

Coarse

Fine x 3

Input + Fine

Input

Halos:

Halos

Let's see what Photoshop Does

Unsharp Masking...

Let's see what Photoshop Does

- Unsharp Masking creates halos
- With the threshold set, fine details are not boosted, only strong edges

Suggestions?

• What removes fine detail without blurring edges?

Median Sharpen

- The "Fine" image is the same as the "Method Noise" images in the previous lecture.
- It should only contain fine detail, not strong edges
- Let's make the base layer with a median filter!

Input

Median Coarse

Median Fine x 3

Median Result

Linear Result

Bilateral Sharpen

• Let's make the base layer with a bilateral filter!

Input

Bilateral Coarse

Bilateral Fine x 3

Bilateral Result

Median Result

Linear Result

Non-Local Means Sharpen?

 Non-Local Means looks for similar patches and averages my value with theirs

- Conformity with peer group

 Non-Local Means sharpening figures out what makes me different from other similar things in the image, and exaggerates that

Rebellion against peer group

Input

NLMeans Coarse

NLMeans Fine x 8

Bilateral Fine x 8

NLMeans Result

Bilateral Result

Input

Remember...

None of this is useful if we can't make it go fast

Other Techniques

- Everyone wants to best the bilateral filter
- Two notable papers to look at:
 - The Trilateral filter (Tumblin et al, EGSR 2003)

Other Techniques

- Edge Preserving Decompositions for Multi-Scale Tone and Detail Manipulation:
 - Farbman et al, SIGGRAPH 2008

