
CS448f: Image Processing For 
Photography and Vision

Denoising



How goes the assignment?



The course so far…

• We have a fair idea what image processing 
code looks like

• We know how to treat an image as a 
continuous function

• We know how to warp images

• What should we do next?



What are the big problems in 
Photography and Computer Vision, 

and how can Image Processing help?



Today: Denoising



How do we know a pixel is bad?

• It’s not like its neighbours

• Solution: Replace each pixel with the average 
of its neighbors

• I.e. Convolve by

1 1 1

1 1 1

1 1 1



3x3 Rect Filter



5x5 Rect Filter



Linear Filters

• Why should a far-away pixel contribute the 
same amount as a nearby pixel

• Gaussian blur:



Gaussian Blur



beta = 2



beta = 5



• It’s radially symettric and separable at the 
same time:

• Its Fourier transform is also a Gaussian

• It’s not very useful for denoising

Some neat properties:



Linear Filters

• Convolve by some kernel

• Equivalent to multiplication in Fourier domain

• Reduces high frequencies

– But we wanted those - that’s what made the 
image sharp!

– You don’t always need the high frequencies. The 
first step in many computer vision algorithms is a 
hefty blur.



Probabilistically...

• What is the most probable value of a pixel, 
given its neighbors?



Probabilistically...

• This is supposed to be dark grey:



Let’s ignore color for now



And inspect the distribution



And inspect the distribution

Most probable pixel value



And inspect the distribution

mean = mode = median



Denoising



Denoising



The distribution



The distribution

The background The text



The distribution

The mean



The distribution

The mode



The distribution

The median



Median Filters

• Replace each pixel with the median of its 
neighbours

• Great for getting rid of salt-and-pepper noise

• Removes small details



Before:



Gaussian Blur:



After Median Filter:



The distribution

• What is the most probable pixel value?



It depends on your current value

• The answer should vary for each pixel



An extra prior

• Method 1) Convolution

– The pixel is probably looking at the same material 
as all of its neighbors, so we’ll set it to the average 
of its neighbors.

• Method 2) Bilateral

– The pixel is probably looking at the same material 
as SOME of its neighbors, so we’ll set it to the 
average of those neighbors only.



The Bilateral Filter

• How do we select good neighbours? 

• The ones with roughly similar brightnesses are 
probably looking at the same material.



Before:



Gaussian Blur:



After Median Filter:



After Bilateral:



Dealing with Color

• It turns out humans are only sensitive to high 
frequencies in brightness

– not in hue or saturation

• So we can blur in chrominance much more 
than luminance



Chroma Blurring

• 1) Convert RGB to LAB

– L is luminance, AB are chrominance 

(hue and saturation)

• 2) Perform a small bilateral in L

• 3) Perform a large bilateral in AB

• 4) Convert back to RGB



Before:



After Regular Bilateral:



After Modified Bilateral:



Method Noise (Gaussian)



Method Noise (Bilateral)



Leveraging Similarity:
Non-Local Means



What color should 
this pixel be?



What color should 
this pixel be?



Gaussian Blur:
A weighted average 
of these:

(all nearby pixels)



Bilateral filter
A weighted average 
of these:

(the nearby ones 
that have a similar 
color to me)



Non-Local Means
A weighted average 
of these:

(the ones that have 
similar neighbors to 
me)



Non-Local Means:

• For each pixel

– Find every other (nearby) pixel that has a similar 
local neighborhood around it to me

– Set my value to be the weighted average of those



Before:



Gaussian Blur:



After Median Filter:



After Bilateral:



After Non-Local Means:



Before:



Method Noise (Gaussian)



Method Noise (Bilateral)



Method Noise (Non-Local Means)



Run-Times: Rect Filter

• For every pixel:

– For every other nearby pixel:

• Do a multiply and add



Run-Times: Gaussian Blur

• For every pixel:

– For every other nearby pixel:

• Compute a distance-based weight
– (can be precomputed)

• Do a multiply and add



Run-Times: Median Filter

• For every pixel:

– For every other nearby pixel:

• Add into a histogram

– Compute the median of the histogram



Run-Times: Bilateral

• For every pixel:

– For every other nearby pixel:

• Compute a similarity weight

• Compute a distance-based weight
– (can be precomputed)

• Do a multiply and add



Run-Times: Non-Local Means

• For every pixel x:

– For every other nearby pixel y:

• Compute a distance weight

• Compute a similarity weight:

• For every pixel z in a patch around y
– Compare z to the corresponding pixel in the patch around x

– Add to the similarity term

• Multiply and add



These methods are all fairly useless for 
large filter sizes

• ... unless you can speed them up


